Abstract

The fabrication of nanowires with axial multiquantum wells or disks presenting a homogeneous size and shape distribution along the whole stack is still an unresolved challenge, despite being essential for narrowing their light emission bandwidth. In this work we demonstrate that the commonly observed change in the shape of the disks along the stacking direction proceeds in a systematic, predictable way. High- resolution transmission electron microscopy of stacked (In,Ga)N quantum discs embedded in GaN nanowires with diameters of ∼40 nm and lengths of ∼700 nm and finite element method calculations show that, contrary to what is normally assumed, this change is not related to the radial growth of the nanowires, which is shown to be negligible, but to the strain relaxation of the whole active region. A simple model is proposed to account for the experimental observations. The model assumes that each disk reaches an equilibrium shape that minimizes the overall energy of the system, given by the sum of the surface and strain energies of the disk itself and the barrier below. The strain state of the barrier is affected by the presence of the disk buried directly below in a way that depends on its shape. This gives rise to a cumulative process, which makes the aspect ratio of each quantum disk to be smaller compared to the disk grown just before, in qualitative agreement with the experimental observations. The obtained results imply that strain relaxation is an important factor to bear in mind for the design of multiquantum disks with controlled shape along the stacking direction in any lattice mismatched nanowire system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.