Abstract

The compressive strain effect on the magnetic ground state and electronic structure of strained GdTiO3 has been studied using the first-principles method. Unlike the cases of congeneric YTiO3 and LaTiO3, both of which become the A-type antiferromagnetism on the (0 0 1) LaAlO3 substrate despite their contrastive magnetism, the ground state of strained GdTiO3 on the LaAlO3 substrate changes from the original ferromagnetism to a G-type antiferromagnetim, instead of the A-type one although Gd3+ is between Y3+ and La3+. It is only when the in-plane compressive strain is large enough, e.g. on the (0 0 1) YAlO3 substrate, that the ground state finally becomes the A-type. The band structure calculation shows that the compressive strained GdTiO3 remains insulating, although the band gap changes a little in the strained GdTiO3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call