Abstract

We have studied the number of arginine-vasopressin (AVP)-immunoreactive (it) somata and the area size of AVP- and neuropeptide Y (NPY)-ir fibers in the suprachiasmatic nuclei (SCN) of three strains of laboratory rats exhibiting a strong unimodal (ACI), a bimodal (BH), and a weak multimodal pattern (LEW) of wheel running activity. In all three strains, AVP-ir somata and fibers were located predominantly in the dorsomedial SCN. Significant strain-differences were found for the area size of AVP-ir fibers as well as for the number and density of AVP-ir somata. The total number of AVP-ir somata was significantly higher in strain ACI (2238 ± 164) than in strains BH (1552 ± 137) and LEW (1426 ± 110), whereas the mean area of AVP-ir fibers was significantly larger in strain LEW (50 779 ± 2202 μm 2) than in strains ACI (39 034 ± 2095 μm 2) and BH (28 052 ± 1728 μm 2). Consequently, the density of AVP-ir somata was significantly lower in LEW rats, which have a weak multimodal activity pattern, than in BH and ACI rats, which have a bimodal and unimodal activity pattern, respectively. These data suggest that AVP neurons may be part of SCN output pathways controlling circadian activity rhythms. NPY-ir fibers have been identified mainly in the ventral part of the SCN. The mean area of NPY-ir fibers was smallest in BH rats (26 100 ± 1822 μm 2), which show a rather scattered activity onset, and larger in ACI (29 934 ± 2468 μm 2) and LEW rats (31889 ± 2728 μm 2), which have rather precise activity onsets. The inbred strains ACI, BH, and LEW may prove to be suitable models to further study distinct neuronal substrates of the SCN functionally correlated with characteristic parameters of circadian rhythms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.