Abstract

Early life stress exposure, including prenatal stress (PNS), influences subsequent risk for many disorders, including substance abuse, and these effects interact with genetic factors to determine risk for disease. We previously demonstrated gene X environmental interactions across the BXD recombinant inbred mouse strain panel and their progenitor strains in PNS modulation of cocaine-induced reward and locomotion. Critical to dissecting genetic interactions with PNS is consideration of the modes of stress transmission to the offspring. Both maternal neuroendocrine responses during stress and subsequent maternal-offspring interactions following stress may serve as transmission modes for PNS-induced changes in cocaine responsiveness. Therefore, we characterized the maternal stress response by measuring restraint stress-induced plasma corticosterone (CORT) during gestation as well as effects of restraint stress on dam-pup contact in the first 10 postnatal days in BXD and progenitor mouse strains. Restraint stress interacted with strain to affect plasma CORT levels and dam-pup contact, indicating heritable variation of the maternal stress response. Furthermore, strain-level variance in maternal stress response correlated to the impact on cocaine response exhibited by adult offspring. These findings implicate multiple modes of maternal stress response in alterations of offspring drug responsiveness and indicate that assessment of maternal endocrine and behavioral responses during early life can be utilized to dissect the complex intersection of maternal factors, the response of the offspring and genetics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call