Abstract

Polycrystalline Ge thin films have attracted considerable attention as potential materials for use in various electronic and optical devices. We recently developed a low-temperature solid-phase crystallization technology for a doped Ge layer and achieved the highest electron mobility in a polycrystalline Ge thin film. In this study, we investigated the effects of strain on the crystalline and electrical properties of n-type polycrystalline Ge layers. By inserting a GeOx interlayer directly under Ge and selecting substrates with different coefficients of thermal expansion, we modulated the strain in the polycrystalline Ge layer, ranging from approximately 0.6% (tensile) to − 0.8% (compressive). Compressive strain enlarged the grain size to 12 µm, but decreased the electron mobility. The temperature dependence of the electron mobility clarified that changes in the potential barrier height of the grain boundary caused this behavior. Furthermore, we revealed that the behavior of the grain boundary barrier height with respect to strain is opposite for the n- and p-types. This result strongly suggests that this phenomenon is due to the piezoelectric effect. These discoveries will provide guidelines for improving the performance of Ge devices and useful physical knowledge of various polycrystalline semiconductor thin films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call