Abstract
The commonly used hyperbolic sine constitutive equation for metal forming at elevated temperatures, with no strain incorporated, is in principle applicable only to deformation in the steady state. However, the actual deformation processes applied to magnesium alloys are mostly in the non-steady state. In the present research, the results of hot uniaxial compression tests of three wrought magnesium alloys covering wide ranges of temperatures and strain rates were used for a strain-dependent constitutive analysis. A strain-dependent constitutive relationship for these alloys was established. It appeared that the apparent activation energy for deformation decreased with increasing the alloying content in these alloys. The constitutive parameters obtained were used to predict flow stresses at given strains and the results were in good agreement with experimental measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.