Abstract

AbstractStrain engineering is an effective strategy in modulating activity of electrocatalysts, but the effect of strain on electrochemical stability of catalysts remains poorly understood. In this work, we combine ab initio thermodynamics and molecular dynamics simulations to examine the role of compressive and tensile strain in the interplay between activity and stability of metal oxides considering RuO and IrO as exemplary catalysts. We reveal that although compressive strain leads to improved activity via the adsorbate‐evolving mechanism of the oxygen evolution reaction, even small strains should substantially destabilize these catalysts promoting dissolution of transition metals. In contrast, our results show that the metal oxides requiring tensile strain to promote their catalytic activity may also benefit from enhanced stability. Importantly, we also find that the detrimental effect of strain on electrochemical stability of atomically flat surfaces could be even greater than that of surface defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.