Abstract
We have examined the relationship between the variance in the atomic-level hydrostatic pressure, {sup 1/2}, and the widths of the first peaks in the reciprocal- and real-space distribution functions for elastically deformed metallic glasses. In situ synchrotron x-ray scattering studies performed on a binary Cu{sub 64.5}Zr{sub 35.5} glass subject to uniaxial loading reveal that the width of the first peak in the reduced-pair distribution function is dependent on the different elastic responses of the partial-pair correlations. Molecular dynamics (MD) simulations of the same binary glass, as well as a single-component glass, subject to hydrostatic deformation show that the widths of the first peaks in the partial-pair distribution functions are affected by length-scale-dependent changes in the relative atomic separation in the first nearest-neighbor shell. Moreover, the MD simulations show that the strain dependencies of the partial-pair peak widths do not necessarily match the strain-dependence of {sup 1/2}. The results suggest that the widths of the peaks in the reciprocal- and real-space functions are not solely dependent on {sup 1/2} but rather are also affected by the atomic rearrangements associated with elastic deformation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.