Abstract

Temperature is a crucial factor for the safe operation of lithium-ion batteries. During operation, the internal temperature rises above the external temperature due to poor inner thermal conductivity. Various sensors have been proposed to detect the internal temperature, including fiber Bragg grating sensors. However, to the authors’ knowledge, there is no detailed description of the encapsulation of the fiber Bragg grating sensor in the literature to shield it from strain. In this study, different encapsulation methods for strain compensation were compared to find the encapsulation material most compatible with the electrolyte. For this, we stored the proposed sensors with different encapsulation methods in ethylene carbonate:ethyl methyl carbonate (EC:EMC) 3:7 with LiPF6 (lithium hexafluorophosphate) electrolyte and applied temperature changes. After evaluating the sensor encapsulation methods in terms of handling, diameter, uncertainty, usability, and hysteresis behavior, the most suitable sensor encapsulation was found to be a fused silica capillary with polyimide coating.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call