Abstract

Data are presented on strain compensation in InGaN-based multiple quantum wells (MQW) using AlGaN interlayers (ILs). The MQWs consist of five periods of InxGa1-xN/AlyGa1-yN/GaN emitting in the green (λ ∼ 535 nm ± 15 nm), and the AlyGa1-yN IL has an Al composition of y = 0.42. The IL is varied from 0 - 2.1 nm, and the relaxation of the MQW with respect to the GaN template layer varies with IL thickness as determined by reciprocal space mapping about the (202¯5) reflection. The minimum in the relaxation occurs at an interlayer thickness of 1 nm, and the MQW is nearly pseudomorphic to GaN. Both thinner and thicker ILs display increased relaxation. Photoluminescence data shows enhanced spectral intensity and narrower full width at half maximum for the MQW with 1 nm thick ILs, which is a product of pseudomorphic layers with lower defect density and non-radiative recombination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.