Abstract

Whey acidic protein (WAP)-transforming growth factor (TGF)-alpha transgenic mice acquire both cancerous and noncancerous mammary lesions. For this study, we evaluated the effect of mouse strain background on the incidence, latency, and histotype of two noncancerous lesions, hyperplastic alveolar nodules (analogous to typical hyperplasias in women), and macrocysts. These lesions display characteristics of fibrocystic changes observed in breasts of women, and in both mice and humans are associated with an uncertain risk of progression to neoplasia. Virgin transgenic mice of the (C57BL/6J;SJL)F2 background developed very few hyperplastic alveolar nodules and no macrocysts. In contrast, when the WAP-TGF-alpha transgene was carried on the FVB/N strain, congenic virgin transgenic mice acquired both lesion types with approximately 100% penetrance. In the (FVB;C57BL/6J)F1 background, hyperplastic alveolar nodule incidence was reduced to approximately the nontransgenic mouse level, and macrocyst latency was increased dramatically. Crossing into C57BL/6 resulted in elimination of the macrocyst phenotype. Finally, FVB strain transgenic mammary epithelium transplanted into nontransgenic recipients of the FVB/N or (FVB;C57BL/6J)F1 backgrounds displayed macrocyst latency characteristic of the recipient, and not donor, mouse strain. Quantitative real-time polymerase chain reaction analysis demonstrated that, despite the difference in macrocyst incidence between (FVB;C57BL/6J)F1 and C57BL/6 virgin transgenic mice (81% versus 0%), the level of TGF-alpha expression was not different. FVB strain transgenic mice expressed only twofold more TGF-alpha than the other backgrounds. These findings indicate that C57BL/6J modifier alleles inhibit mammary lesion incidence and macrocyst latency in a semidominant manner, and that suppression of lesion development can involve host factors that are independent of mammary epithelial genotype.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.