Abstract

We propose and demonstrate a new channel strain control technology enabling to realize both high performance tensile strain Ge-on-insulator (GOI) n-MOSFETs and compressive strain GOI p-MOSFETs on a same substrate. It is found that additional oxidation at 850 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">o</sup> C after Ge condensation changes the strain condition in GOI from 1.8 % compressive strain to 0.5% tensile strain, resulting in the electron mobility enhancement of 2.1. Furthermore, thinning GOI channel thickness introduces significant mobility enhancement attributable to GOI band modulation, leading to electron mobility of 777 cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> /Vs in n-MOSFETs with GOI thickness of 2.5 nm. For performance enhancement of p-MOSFETs, (110)-oriented SGOI formation by Ge condensation is studied. It is found that SGOI with the Ge fraction of 54 % maximizes the hole mobility from the viewpoints of both strain and Ge fractions. Record high hole mobility of 837 cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> /Vs is demonstrated with compressive strain (110) 27-nm-thick Si <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">046</sub> G <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">54</sub> OI p-MOSFETs, compared with mobility in planar GOI/SGOI p-MOSFETs reported so far. In addition, high hole mobility of 295 cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> /Vs is still maintained for 5-nm-thick extremely-thin body (110) Si <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">46</sub> G <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">54</sub> OI p-MOSFETs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.