Abstract

This article deals with the prediction of strain-and stress-based forming limit curves for advanced high strength steel DP590 sheet using Marciniak-Kuczynski (M-K) method. Three yield criteria namely Von-Mises, Hill’s 48 and Yld2000-2d and two hardening laws i.e., Hollomon power and Swift hardening laws were considered to predict the forming limit curves (FLCs) for DP590 steel sheet. The effects of imperfection factor and initial groove angle on prediction of FLC were also investigated. It was observed that the FLCs shifted upward with the increase of imperfection factor value. The initial groove angle was found to have significant effects on limit strains in the left side of FLC, and insignificant effect for the right side of FLC for certain range of strain paths. The limit strains were calculated at zero groove angle for the right side of FLC, and a critical groove angle was used for the left side of FLC. The numerically predicted FLCs considering the different combinations of yield criteria and hardening laws were compared with the published experimental results of FLCs for DP590 steel sheet. The FLC predicted using the combination of Yld2000-2d yield criterion and swift hardening law was in better coorelation with the experimental data. Stress based forming limit curves (SFLCs) were also calculated from the limiting strain values obtained by M-K model. Theoretically predicted SFLCs were compared with that obtained from the experimental forming limit strains. Stress based forming limit curves were seen to better represent the forming limits of DP590 steel sheet compared to that by strain-based forming limit curves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call