Abstract

AbstractThis study constructs a model to represent the strain–stress field surrounding a splay fault and demonstrates the accumulation processes of both strain and stress around the splay fault. We consider the case of multiple fault dislocations, construct the model as a function of the effective viscosity in the media, and investigate the influence of the effective viscosity on the strain and stress accumulation patterns. The results show that the strain and stress tend to accumulate in the splay fault and the subducting oceanic crust, and the rate of accumulation varies with the effective viscosity. The accumulation and relaxation of strain and stress are simultaneous, and the slower the effective viscosity, the slower the accumulation rate. We discuss the relationship between the splay faults, fluid, and intraslab earthquakes. Finally, the possibility that effective viscosity may contribute to the mode of occurrence of intraslab earthquakes at the Hikurangi subduction margin is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call