Abstract

Recent experiments demonstrated that the catalytic centers for the hydrogen evolution reaction (HER) are different on Pd and Pt nanoislands on Au(111). Inspired by these experiments, we examined the geometric, energetic, electronic and hydrogen adsorption properties of monolayer model nanoislands of Pd and Pt supported on Au(111) with density functional theory calculations. Accordingly, Au-tensile strain effects can be nearly 50% larger on the geometric structure of nanoislands of Pd on Au(111) than their Pt analogs, resulting on different electronic properties for these nanoislands. Despite these differences between Pd and Pt nanoisland on Au(111), our computational modelling of the hydrogen adsorption suggests that the unique catalytic centers for the HER on Pd and Pt nanoislands supported on Au(111) derive from the existence of low-coordinated adsorption sites and the intrinsic properties of Pd and Pt, but not from Au-tensile strain effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call