Abstract

Electronic nematicity has previously been observed in La2-xSrxCuO4 thin films by the angle-resolved transverse resistivity method with a director whose orientation is always pinned to the crystal axes when the film is grown on an orthorhombic substrate but not when the substrate is tetragonal. Here we report on measurements of thin films grown on (tetragonal) LaSrAlO4 and subsequently placed in an apparatus that allows the application of uniaxial compressive strain. The apparatus applied enough force to produce a 1% orthorhombicity in LaSrAlO4 and yet no change in the electronic nematicity was observed in films under strain compared to when they were unstrained. The lattice effects are weak, and the origin of nematicity is primarily electronic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.