Abstract

Quantitative mapping of deformation and elasticity in optical coherence tomography has attracted much attention of researchers during the last two decades. However, despite intense effort it took ~15 years to demonstrate optical coherence elastography (OCE) as a practically useful technique. Similarly to medical ultrasound, where elastography was first realized using the quasi-static compression principle and later shear-wave-based systems were developed, in OCE these two approaches also developed in parallel. However, although the compression OCE (C-OCE) was proposed historically earlier in the seminal paper by J. Schmitt in 1998, breakthroughs in quantitative mapping of genuine local strains and the Young's modulus in C-OCE have been reported only recently and have not yet obtained sufficient attention in reviews. In this overview, we focus on underlying principles of C-OCE; discuss various practical challenges in its realization and present examples of biomedical applications of C-OCE. The figure demonstrates OCE-visualization of complex transient strains in a corneal sample heated by an infrared laser beam.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.