Abstract

This is the first paper of a two-paper series describing design, implementation and validation of a strain and damage monitoring system for CFRP fuselage stiffened panels based on fiber optic Bragg grating sensors. The monitoring system was developed and tested on the basis of three load-scenarios: compression to failure of the undamaged panel, compression to failure of the impacted panel and compression to failure of the impacted and fatigued panel. This paper focuses on the design of the fuselage panel, the design of the monitoring system, the embedment of fiber sensors in the panel during manufacturing and the impact testing. The network of the sensors was designed based on a numerical buckling analysis from which the strain field of the panel was computed as a function of the applied compressive load. Embedment of fiber sensors in the panel was done so as to minimize risk of fiber breaking during manufacturing and impact testing and to effectively capture strains that are representative of damage developed in the panel due to compressive load. Barely visible and visible low velocity impact damage sites were created at different locations of the panel using a drop-weight impactor. The panels were inspected using C-scan just after manufacturing, to check quality of the material, and just after impact testing to detect impact damage at each location.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.