Abstract

Radiation damage in materials is a space and time multi-scale process, ranging from the atomic scale up to the macroscopic scale, and from the femtosecond up to several years. The prediction of the long term evolution of materials subjected to radiative environments (in the nuclear or in the space industry, as well as in the field of microelectronics) therefore requires the combination of several simulation and experimental techniques able to cover the different space and time scales involved. X-ray diffraction (XRD) is highly sensitive to atomic displacements while probing macroscopic volumes of material. In this respect it is perfectly suited for the study of radiation damage. In this work it is shown how XRD can be quantitatively and qualitatively used in combination with numerical simulations, like molecular dynamics and rate-equation cluster dynamics, to analyze damage build-up in irradiated SiC and ZrC single crystals. Particular emphasis is laid on the methodological aspects of XRD data treatment in order to extract parameters such as damage-induced strain and disorder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.