Abstract
We have analyzed the strain distribution and the photoluminescence in Ge microstructures fabricated by means of a Si-CMOS compatible method. The tensile strain in the Ge microstructures is obtained by using a SiN stressor layer. Different shapes of microstructure, allowing the Ge layers to freely expand into one, two, or three dimensions, resulted in different strain distribution profiles. Maximal equivalent biaxial tensile strain values up to ∼0.8% have been measured. Room temperature photoluminescence emission has been observed and attributed to direct-band gap recombination spectrally shifted by tensile strain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.