Abstract

High-resolution single crystal neutron diffraction measurements are presented probing the magnetostructural response to uniaxial pressure in the iron pnictide parent system BaFe2As2. Scattering data reveal a strain-activated, anisotropic broadening of nuclear Bragg reflections, which increases upon cooling below the resolvable onset of global orthorhombicity. This anisotropy in lattice coherence continues to diverge until a lower temperature scale---the first-order onset of antiferromagnetism---is reached. Our data suggest that antiferromagnetism and strong magnetoelastic coupling drive the strain-activated lattice response in this material and that the development of anisotropic lattice coherence under strain is the physical origin for the anomalous nematic anisotropy in this compound.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call