Abstract

Novel oligodimethylsiloxane-based polymers with alkyl side chain were synthesized in bulk by step-growth polymerization between α,ω-glycidyl ether oligodimethylsiloxanes and a monoalkylamine in the absence of catalyst and at temperatures ranging between 80 and 180 °C. Matrix assisted laser desorption ionization time of flight results attested for the high reactivity of the amine functions with the glycidyl groups and revealed that the main polymer structure was (A2B2)n type with alkyl moieties as dangling chains. No etherification was observed during the reaction even at high temperatures and the nature of the end groups strongly depended on the molar ratio between glycidyl and amine functions. Polymerization reactions were followed by 1H NMR and the kinetics of the glycidyl-amine reaction pointed out the dependence of temperature, molar ratio, and the molar mass of the oligodimethylsiloxane. High conversion rates were obtained, especially with the lowest molecular weight oligodimethylsiloxane. An optimized kinetic model derived from the Horie's model was discussed and permitted to correctly fit the experimental data. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call