Abstract

Tungsten disulfide (WS2) is a very promising material with great potential for optoelectronics applications. To grow WS2 monolayer samples, chemical vapor deposition (CVD) is very reliable when it comes to controlling the sample quality, but there is still a lot of debate on whether the method is controllable beyond research-only systems. Although monolayer crystals are prepared through CVD, the challenge is to efficiently characterize and differentiate monolayer crystals from bilayers and few-layers. In this work, we report a new straightforward Raman peak identification to discriminate monolayer WS2 crystals from layered and bulk samples. Our method is based on the A1g peak behavior. We show that through the comparison and analysis of other less convenient techniques that the strong splitting in A1g mode in close-to-resonance excitation energy condition is a much more convenient and fast identification method than either low-wavenumber Raman scattering characterization or atomic force microscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.