Abstract

In this short note, we show how to use a highly accurate finite-difference scheme to compute second derivatives in the Navier–Stokes equations while ensuring targeted numerical dissipation. This approach, essentially non conservative, is shown to be close to an upwind method and is straightforward to implement with a negligible computational extra cost. The benefit offered by the resulting discrete operator is illustrated for the direct computation of sound in aeroacoustics and in the more general context of large-eddy simulation through connections with hyperviscosity and spectral vanishing viscosity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.