Abstract

We investigate periodic straight-line orbits (SLO) in Hamiltonian force fields using both direct and inverse methods. A general theorem is proven for natural Hamiltonians quadratic in the momenta in arbitrary dimension and specialized to two and three dimension. Next we specialize to homogeneous potentials and their superpositions, including the familiar H\'enon-Heiles problem. It is shown that SLO's can exist for arbitrary finite superpositions of $N$-forms. The results are applied to a family of generalized H\'enon-Heiles potentials having discrete rotational symmetry. SLO's are also found for superpositions of these potentials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.