Abstract

From flight data obtained on a fruit bat, Cynopterus brachyotis, a kinematic model for straight-line flapping motion is extracted and analyzed in a computational fluid dynamics (CFD) framework to gain insight into the complexity of bat flight. The intricate functional mechanics and architecture of the bat wings set it apart from other vertebrate flight. The extracted kinematic model is simulated for a range of Reynolds numbers, to observe the effect these phenomena have on the unsteady transient mechanisms of the flow produced by the flapping wings. The Strouhal number calculated from the data is high indicating that the oscillatory motion dominates the flow physics. From the obtained data, the bat exhibits fine control of its mechanics by actively varying wing camber, wing area, torsional rotation of the wing, forward and backward translational sweep of the wing, and wing conformation to dictate the fluid dynamics. As is common in flapping flight, the primary force generation is through the attached unsteady vortices on the wing surface. The bat through varying the wing camber and the wing area modulates this force output. The power requirement for the kinematics is analyzed and correlated with the aerodynamic performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call