Abstract

SummaryInserting large DNA payloads (>10 kb) into specific genomic sites of mammalian cells remains challenging. Applications ranging from synthetic biology to evaluating the pathogenicity of disease-associated variants for precision medicine initiatives would greatly benefit from tools that facilitate this process. Here, we merge the strengths of different classes of site-specific recombinases and combine these with CRISPR-Cas9-mediated homologous recombination to develop a strategy for stringent site-specific replacement of genomic fragments at least 50 kb in size in human induced pluripotent stem cells (hiPSCs). We demonstrate the versatility of STRAIGHT-IN (serine and tyrosine recombinase-assisted integration of genes for high-throughput investigation) by (1) inserting various combinations of fluorescent reporters into hiPSCs to assess the excitation-contraction coupling cascade in derivative cardiomyocytes and (2) simultaneously targeting multiple variants associated with inherited cardiac arrhythmic disorders into a pool of hiPSCs. STRAIGHT-IN offers a precise approach to generate genetically matched panels of hiPSC lines efficiently and cost effectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.