Abstract

This paper presents numerical solutions of straight plane beam structures rested on an elastic (Winkler's) foundation. It is a continuation of our previous work (see Part 1 of this article) focused on practical applications and solutions including nonlinearities in the foundation (i.e. bilateral linear, bilateral linear + cubic, bilateral linear + cubic + quintic approximations and unilateral approximation for dependencies of reaction forces on deflection in the foundation). For solutions of nonlinear problems of mechanics (i.e. differential 4th-order equations), the Finite Difference Method (i.e. the Central Difference Method) is applied in combination with the Newton (Newton–Raphson) Method. Finally, in one example, linear and nonlinear approaches are solved, evaluated and compared. In some cases, there are evident major differences between the linear and nonlinear solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.