Abstract
Abstract A new approach has been taken to the problem of straight and bent bar buckling, where bar buckling is considered as a function of axial displacement of one end. It was assumed that the length of a bar being buckled at any instant of buckling is the same as that of a straight bar, regardless of the size of axial displacement of one end of the bar. Based on energy equations, a formula was derived for the value of axial displacement of one bar end or buckling amplitude in the middle of bar length as a function of compressive force. The established relationships were confirmed by simulation tests using the finite element software Midas NFX and by experimental tests.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Multidisciplinary Aspects of Production Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.