Abstract

We consider the problem of massive matrix multiplication, which underlies many data analytic applications, in a large-scale distributed system comprising a group of worker nodes. We target the stragglers' delay performance bottleneck, which is due to the unpredictable latency in waiting for slowest nodes (or stragglers) to finish their tasks. We propose a novel coding strategy, named \emph{entangled polynomial code}, for designing the intermediate computations at the worker nodes in order to minimize the recovery threshold (i.e., the number of workers that we need to wait for in order to compute the final output). We demonstrate the optimality of entangled polynomial code in several cases, and show that it provides orderwise improvement over the conventional schemes for straggler mitigation. Furthermore, we characterize the optimal recovery threshold among all linear coding strategies within a factor of $2$ using \emph{bilinear complexity}, by developing an improved version of the entangled polynomial code. In particular, while evaluating bilinear complexity is a well-known challenging problem, we show that optimal recovery threshold for linear coding strategies can be approximated within a factor of $2$ of this fundamental quantity. On the other hand, the improved version of the entangled polynomial code enables further and orderwise reduction in the recovery threshold, compared to its basic version. Finally, we show that the techniques developed in this paper can also be extended to several other problems such as coded convolution and fault-tolerant computing, leading to tight characterizations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.