Abstract

In this paper, we study the straggler identification problem, in which an algorithm must determine the identities of the remaining members of a set after it has had a large number of insertion and deletion operations performed on it, and now has relatively few remaining members. The goal is to do this in o(n) space, where n is the total number of identities. Straggler identification has applications, for example, in determining the unacknowledged packets in a high-bandwidth multicast data stream. We provide a deterministic solution to the straggler identification problem that uses only O(d log n) bits, based on a novel application of Newton's identities for symmetric polynomials. This solution can identify any subset of d stragglers from a set of n O(log n)-bit identifiers, assuming that there are no false deletions of identities not already in the set. Indeed, we give a lower bound argument that shows that any small-space deterministic solution to the straggler identification problem cannot be guaranteed to handle false deletions. Nevertheless, we provide a simple randomized solution, using O(d log n log (1/∈)) bits that can maintain a multiset and solve the straggler identification problem, tolerating false deletions, where ∈ > 0 is a user-defined parameter bounding the probability of an incorrect response. This randomized solution is based on a new type of Bloom filter, which we call the invertible Bloom filter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.