Abstract

Distribution of vitamin A throughout the body is important to maintain retinoid function in peripheral tissues and to ensure optimal vision. A critical step of this process is the transport of vitamin A across cell membranes. Increasing evidence indicates that this process is mediated by a multidomian membrane protein that is encoded by the stimulated by retinoic acid 6 (STRA6) gene. Biochemical studies revealed that STRA6 is a transmembrane pore which transports vitamin A bidirectionally between extra- and intracellular retinoid binding proteins. Vitamin A accumulation in cells is driven by coupling of transport with vitamin A esterification. Loss-of-function studies in zebrafish and mouse models have unraveled the critical importance of STRA6 for vitamin A homeostasis of peripheral tissues. Impairment in vitamin A transport and uptake homeostasis are associated with diseases including type 2 diabetes and a microphthalmic syndrome known as Matthew Wood Syndrome. This review will discuss the advanced state of knowledge about STRA6's biochemistry, biology and association with disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.