Abstract

Mitogen activated protein kinase kinase (MAPKK) is a crucial component in the MAPK signaling pathway. However, the functions of MAPKKs in foliar pathogens remain poorly understood. In the current study, a MAPKK gene designated as StPBS2 was cloned from Setosphaeria turcica and the functions of this gene were investigated by RNAi technology. Four independent StPBS2 gene silence transformants with different efficiencies were confirmed by real time PCR. Compared to the wild type strain (WT), these transformants showed decreased colony growth, shortened hyphae cell length, broadened cell width and an obvious reduction in conidium yield. Moreover, the cell wall of the transformants was thicker and they were also more sensitive to substances that interfere with cell wall biosynthesis than WT. Additionally, the transformants displayed higher sensitivity to hypertonic stress than WT and the sensitivity was associated with the level of silencing of StPBS2. They were also resistant to the fungicides iprodione, procymidone and fludioxonil, to which WT almost completely sensitive. The transformants produced more red secondary metabolites than WT and the production was enhanced with increasing silencing level and increased glucose content in PDA medium. Our results suggest that StPBS2 is involved in morphogenesis, condiogenesis, cell wall development, hypertonic stress reaction and resistance to fungicides, as well as in the biosynthesis of secondary metabolites in S. turcica.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.