Abstract

Storm events impact freshwater microbial communities by transporting terrestrial viruses and other microbes to freshwater systems, and by potentially resuspending microbes from bottom sediments. The magnitude of these impacts on freshwater ecosystems is unknown and largely unexplored. Field studies carried out at two discrete sites in coastal Virginia (USA) were used to characterize the viral load carried by runoff and to test the hypothesis that terrestrial viruses introduced through stormwater runoff change the composition of freshwater microbial communities. Field data gathered from an agricultural watershed indicated that primary runoff can contain viral densities approximating those of receiving waters. Furthermore, viruses attached to suspended colloids made up a large fraction of the total load, particularly in early stages of the storm. At a second field site (stormwater retention pond), RAPD-PCR profiling showed that the viral community of the pond changed dramatically over the course of two intense storms while relatively little change was observed over similar time scales in the absence of disturbance. Comparisons of planktonic and particle-associated viral communities revealed two completely distinct communities, suggesting that particle-associated viruses represent a potentially large and overlooked portion of aquatic viral abundance and diversity. Our findings show that stormwater runoff can quickly change the composition of freshwater microbial communities. Based on these findings, increased storms in the coastal mid-Atlantic region predicted by most climate change models will likely have important impacts on the structure and function of local freshwater microbial communities.

Highlights

  • Viruses are the most abundant organisms in aquatic systems, typically outnumbering bacteria 10- to 100-fold, and the majority of environmental viruses are believed to infect prokaryotes (Wommack and Colwell, 2000; Weinbauer, 2004)

  • Given the concentrations of viruses in stormwater runoff, including both the planktonic and www.frontiersin.org particle-associated fractions, and the volume of water flux during the storm, approximately 1015 virus particles passed through the erosion channel during this single storm event

  • This work represents the first known study to investigate the total viral load of stormwater runoff and measure the impacts of terrestrial runoff on freshwater aquatic viral communities. While this is an important first step in understanding how aquatic viral communities respond to infiltration of runoff, several important caveats must be taken into consideration

Read more

Summary

Introduction

Viruses are the most abundant organisms in aquatic systems, typically outnumbering bacteria 10- to 100-fold, and the majority of environmental viruses are believed to infect prokaryotes (Wommack and Colwell, 2000; Weinbauer, 2004). Viral infections can impact microbial community function by influencing abundance and species composition of host communities (Thingstad, 2000; Bonilla-Findji et al, 2009; Sandaa et al, 2009). The release of dissolved organic compounds from viral lysis of cells can influence global nutrient cycles (Azam et al, 1983; Bratbak et al, 1992; Fuhrman, 1999; Bonilla-Findji et al, 2008). Fecal coliform plate counts (Knight et al, 2000; Jeng et al, 2005; Schoonover and Lockaby, 2006) or PCR detection of specific viral nucleic acid sequences (Rajal et al, 2007) are used to assess the microbiological quality of runoff-impacted waters, and identify potential threats to human health

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call