Abstract
We introduce and analyze the first energy-conservative hybridizable discontinuous Galerkin method for the semidiscretization in space of the acoustic wave equation. We prove optimal convergence and superconvergence estimates for the semidiscrete method. We then introduce a two-step fourth-order-in-time Stormer-Numerov discretization and prove energy conservation and convergence estimates for the fully discrete method. In particular, we show that by using polynomial approximations of degree two, convergence of order four is obtained. Numerical experiments verifying that our theoretical orders of convergence are sharp are presented. We also show experiments comparing the method with dissipative methods of the same order.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.