Abstract

Sinking Creek (HUC 06010103046), in the Watauga watershed of northeast Tennessee, is impaired due to Escherichia coli. To assess how E. coli and other water quality parameters fluctuated during storm events, water samples were collected with automated samplers during eight storms at two locations: Sinking Creek and a feeder spring. Turbidity and electrical conductivity data loggers were deployed in the creek, and dissolved oxygen (DO) was measured in situ. The presence of optical brighteners, used in detergents and an indicator of residential wastewater, was assessed using cotton fabric deployed at both sites and analyzed by an external laboratory. The Colilert Quanti-Tray method was used to process water samples for E. coli. Relationships between water quality parameters and lagged precipitation were assessed using cross-correlation. At the creek, E. coli and turbidity increased within 2h of precipitation, exceeding the single sample water quality standard of 941 cfu 100ml-1 during the storm. At the spring, E. coli became elevated more quickly than at the stream, within 30 min of precipitation, and decreased below the standard during the event. Electrical conductivity decreased within 1.5 h of the storm at the creek, and DO levels were higher at the creek than at the spring. Optical brightener analysis indicated possible presence of residential wastewater during one of two sampled storms. Targeted sampling and dye tracing are recommended to validate this hypothesis. These results may be used to inform field methods in similar storm sampling studies and will be useful in watershed restoration efforts in Sinking Creek.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.