Abstract

In this paper, we present the Stork data scheduler as a solution for mitigating the data bottleneck in e-Science and data-intensive scientific discovery. Stork focuses on planning, scheduling, monitoring and management of data placement tasks and application-level end-to-end optimization of networked inputs/outputs for petascale distributed e-Science applications. Unlike existing approaches, Stork treats data resources and the tasks related to data access and movement as first-class entities just like computational resources and compute tasks, and not simply the side-effect of computation. Stork provides unique features such as aggregation of data transfer jobs considering their source and destination addresses, and an application-level throughput estimation and optimization service. We describe how these two features are implemented in Stork and their effects on end-to-end data transfer performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.