Abstract
Large-scale quantum networks require quantum memories featuring long-lived storage of non-classical light together with efficient, high-speed and reliable operation. The concurrent realization of these features is challenging due to inherent limitations of matter platforms and light–matter interaction protocols. Here, we propose an approach to overcome this obstacle, based on the implementation of the Autler–Townes-splitting (ATS) quantum-memory protocol on Bose–Einstein condensate (BEC) platform. We demonstrate a proof-of-principle of this approach by storing short pulses of single-photon-level light as a collective spin-excitation in a rubidium-BEC. For 20 ns long-pulses, we achieve an ultra-low-noise memory with an efficiency of 30% and lifetime of 15 μs. The non-adiabatic character of the ATS protocol (leading to high-speed and low-noise operation) in combination with the intrinsically large atomic densities and ultra-low temperatures of the BEC platform (offering highly efficient and long-lived storage) opens up a new avenue toward high-performance quantum memories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.