Abstract

We review the implementation of quantum information processing using quantum spins and pulsed spin resonance techniques. Molecular magnets, nanoscale clusters of coupled transition metal ions, offer various potential advantages over other spin systems as the building blocks of a quantum computer. We describe the strategies which must be employed in order to implement quantum algorithms in such nanoscale magnets and explain why, when evaluating the suitability of any physical system for embodying a qubit, it is essential to determine the phase relaxation time appropriate for an individual molecular spin. Experiments utilising pulsed spin resonance techniques show that the phase relaxation times in at least some molecular magnets are long enough to permit multiple qubit operations to be performed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.