Abstract

We extend the notion of Store Atomicity [Arvind and Jan-Willem Maessen. Memory model = instruction reordering + store atomicity. In ISCA '06: Proceedings of the 33rd annual International Symposium on Computer Architecture, 2006] to a system with atomic transactional memory. This gives a fine-grained graph-based framework for defining and reasoning about transactional memory consistency. The memory model is defined in terms of thread-local Instruction Reordering axioms and Store Atomicity, which describes inter-thread communication via memory. A memory model with Store Atomicity is serializable: there is a unique global interleaving of all operations which respects the reordering rules and serializes all the operations in a transaction together. We extend Store Atomicity to capture this ordering requirement by requiring dependencies which cross a transaction boundary to point in to the initiating instruction or out from the committing instruction. We sketch a weaker definition of transactional serialization which accounts for the ability to interleave transactional operations which touch disjoint memory. We give a procedure for enumerating the behaviors of a transactional program—noting that a safe enumeration procedure permits only one transaction to read from memory at a time. We show that more realistic models of transactional execution require speculative execution. We define the conditions under which speculation must be rolled back, and give criteria to identify which instructions must be rolled back in these cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.