Abstract

This is a state-of-the-art review of various treatments of earthquake loaded liquid filled shells by the methods of earthquake engineering, fluid dynamics, structural and soil dynamics, as well as the theory of stability and computational mechanics. Different types of tanks and different possibilities of tank failure will be discussed. We will emphasize cylindrical above-ground liquid storage tanks with a vertical axis. But many of the treatments are also valid for other tank configurations. For the calculation of the dynamically activated pressure due to an earthquake a fluid-structure-soil interaction problem must be solved. The review will describe the methods, proposed by different authors, to solve this interaction problem. To study the dynamic behavior of liquid storage tanks, one must distinguish between anchored and unanchored tanks. In the case of an anchored tank, the tank bottom edge is fixed to the foundation. If the tank is unanchored, partial lifting of the tank’s bottom may occur, and a strongly nonlinear problem has to be solved. We will compare the various analytical and numerical models applicable to this problem, in combination with experimental data. An essential aim of this review is to give a summary of methods applicable as tools for an earthquake resistant design, which can be used by an engineer engaged in the construction of liquid storage tanks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.