Abstract

In recent years, due to the specific health benefits associated with bioactive peptides and the reduction of protein allergenicity by enzymatic hydrolysis, the utilisation of protein hydrolysates in the intermediate-moisture food (IMF) market, such as high protein nutrition bars (HPNB), has significantly increased. Currently, no reported study is related to the storage stability of dried hen egg white (DEW) and its hydrolysates (HEW) in an IMF matrix. Therefore, three DEW/HEW dough model systems (100%HEW+0%DEW, 75%HEW+25%DEW and 50%HEW+50%DEW) were established using two commercial spray-dried egg white powders to study the effect of temperature and fraction of HEW on these IMF models (water activity (aw): ∼0.8). During storage at three different temperatures (23, 35 and 45°C) for 70days, the selected physicochemical properties of the dough systems were compared. Overall, kinetic analysis showed an apparent zero-order model fit for the change in the colour (L∗), fluorescence intensity (FI) and hardness, as a function of time, for different dough model systems. As expected, the L∗, FI and hardness increased as a function of time mainly due to the Maillard reaction. The amount of free amino groups decreased, with an increase in rate of loss, as temperature increased in the 100%HEW+0%DEW model. When DEW was substituted for some HEW, the regeneration of the free amino groups after loss was observed as a function of time. Furthermore, when the percentage of HEW was decreased, the incidence of mouldy samples occurred sooner, which indicates that HEW has some antimicrobial ability, especially in the 100%HEW+0%DEW system where mould growth did not occur.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.