Abstract

Storage of milk powder under unfavourable conditions accelerates the normally slow deterioration in nutritional quality. The effects of such storage on the water-soluble vitamin composition were examined. (a) Spray-dried whole milk containing 25 g water/kg was stored at 60 degrees and 70 degrees and sampled weekly to 9 weeks. (b) Spray-dried whole milk and skimmed milk were adjusted to contain 40 and 100 g water/kg and stored at 37 degrees in nitrogen and in oxygen. Samples were taken for analysis at intervals during storage. The samples were analysed for eight B-complex vitamins and ascorbic acid, and also for total lysine, 'reactive lysine' and 'lysine as lactulosyl-lysine'. Storage at 60 degrees caused rapid destruction of folic acid (53% loss at 4 weeks) and slower loss of thiamin, vitamin B6 and pantothenic acid (18% at 8 weeks). There was no change in the content of riboflavin, biotin, nicotinic acid and vitamin B12. At 70 degrees the rate of destruction of the four labile vitamins was much increased; 18% or less survived at 4 weeks. At 37 degrees and 40 g water/kg there was little change in total and 'reactive' lysine during storage for 57 d. Lactulosyl-lysine was demonstrably present but at low concentration. There was considerable loss of folate (72%) and ascorbate (91%) during storage for 30 d in O2, but no significant loss in N2. Thiamin fell by approximately 12% in 57 d, equally in O2 and N2. The content of the remaining vitamins was unchanged. At 100 g water/kg there were progressive Maillard changes. During 27 d in N2 the colour changed from cream to pale brown, but in O2 there was no perceptible colour change. Total lysine fell by 20% in 27 d, and 'reactive lysine' by 30%. Folate was stable during 16 d in N2, but largely (94%) destroyed in O2. Ascorbic acid was also destroyed in N2 as in O2. Thiamin fell by 41% in 27 d, equally in O2 and N2. Vitamin B6 was more labile, especially in N2, falling by 71% in 16 d. With skimmed-milk powder containing 100 g water/kg, storage at 37 degrees in O2 and N2 gave much the same results as for the corresponding whole-milk powder. The presence of milk fat had no marked effect on the stability of the water-soluble vitamins. Destruction of vitamins was clearly linked to the progress of Maillard-type reactions and was strongly influenced by time and temperature of storage, moisture content and, in some instances, by the presence of O2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call