Abstract
AbstractSingle crystals of a cyclodextrin‐based metal–organic framework (MOF) infused with an ionic electrolyte and flanked by silver electrodes act as memristors. They can be electrically switched between low and high conductivity states that persist even in the absence of an applied voltage. In this way, these small blocks of nanoporous sugar function as a non‐volatile RRAM memory elements that can be repeatedly read, erased, and re‐written. These properties derive from ionic current within the MOF and the deposition of nanometer‐thin passivating layers at the anode flanking the MOF crystal. The observed phenomena are crucially dependent on the sub‐nanometer widths of the channels in the MOF, allowing the passage of only smaller ions. Conversely, with the electrolyte present but no MOF, there are no memristance or memory effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.