Abstract
AbstractDesign to store gas molecules, such as CO2, H2, and CH4, under low pressure is one of the most important challenges in chemistry and materials science. Herein, we describe the storage of CO2 in the cavities of a porous coordination polymer (PCP) using molecular rotor dynamics. Owing to the narrow pore windows of PCP, CO2 was not adsorbed at 195 K. As the temperature increased, the rotors exhibited rotational modes; such rotations dynamically expanded the size of the windows, leading to CO2 adsorption. The rotational frequencies of the rotors (k≈10−6 s) and correlation times of adsorbed CO2 (τ≈10−8 s) were elucidated via solid‐state NMR studies, which suggest that the slow rotation of the rotors sterically restricts CO2 diffusion in the pores. This restriction results in an unusually slow CO2 mobility close to solid state (τ≥10−8 s). Once adsorbed at room temperature, CO2 is robustly stored in the PCP under vacuum at 195–233 K because of the steric hindrance of the rotors. We also demonstrate that this mechanism can be applied to the storage of CH4.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.