Abstract

Abstract In this study, the storage capacity fade of a commercial 18650 lithium ion cell comprised with a composite cathode of LiNi 0.5 Mn 0.3 Co 0.2 O 2 (NMC) and Li 1.1 Mn 1.9 O 4 (LMO) and graphite anode at various depths-of-discharge (DoDs) and temperatures have been investigated. The results manifest that the capacity fading is strongly affected by the storage temperature and becomes prominent as temperatures higher than 45 °C. Results of the incremental capacity analysis of the charging/discharging curves cycled at C/25 rate under 25 °C after cells been stored at various DoDs at 60 °C for various durations are used to reveal the factors of storage capacity fade of this commercial cell in company with the results of post-mortem studies on the electrodes harvested from the 12 month storage-aged cells with SEM, EDX, XPS, XRD, and electrode capacity retention study with those of a fresh commercial cell for comparison. The contributions of these factors are also estimated quantitatively. The losses of active electrode materials are the main reasons of the storage capacity fade of the commercial cell comprised with composite NMC/LMO cathode and graphite anode, while the loss of lithium inventory is less influential. The degradation of the electrodes and the loss the lithium inventory are strongly DoD dependent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.