Abstract

Virtualization is the trend for the future mobile networks. With the advantage of virtualization, we can abstract the physical mobile network into the virtual network function (VNF) and design the network without the details. In this paper, we focus on the virtualization of the physical resources so that the resource allocation scheme considers not only the time-varying characteristic of wireless channels but also the amount of storage and computing resources. Virtual resources are composed of radio, storage and computing resources based on the virtualization technology. Since the cloud radio access network (C-RAN) is a successful paradigm to introduce computing resources into mobile networks, we investigate the virtual resource allocation scheme in the C-RAN architecture. With the content caching technology, we introduce the storage resources into joint resource allocation scheme further. In order to evaluate the performance of proposed scheme, we choose the effective capacity as the metric to include the influence of service latency. The purpose of the optimization problem is maximizing the system effective capacity with constraints of radio, storage and computing resources. It is simplified and converted into a convex problem solved by the subgradient method. Simulation results are provided to demonstrate performance gain of the effective capacity based joint resource allocation scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.