Abstract

The effects of ontogeny, diet, and phylogeny on glycogen storage levels and esterase and alkaline phosphatase activities in four related prickleback fishes were determined in situ using quantitative histochemistry. Of these species, Cebidichthys violaceus and Xiphister mucosus shift from carnivory to herbivory at approximately 45 mm standard length (SL), whereas Xiphister atropurpureus and Anoplarchus purpurescens remain carnivores. Comparisons between small (30-40 mm SL) and larger (60-75 mm SL) wild-caught juveniles showed that glycogen storage levels and alkaline phosphatase activity were unchanged with ontogeny. Comparisons between the larger wild-caught juveniles and juveniles of the same size that had been raised on a high-protein animal diet revealed that glycogen storage level and alkaline phosphatase activity increased in all species in response to this diet. Esterase activity also increased in response to the high-protein animal diet in all four species but increased with ontogeny only in C. violaceus, X. mucosus, and X. atropurpureus, in the xiphisterine clade, and not in A. purpurescens, in the adjacent alectriine clade. Xiphister mucosus and X. atropurpureus showed indistinguishable responses in esterase activity to ontogeny and diet despite their divergent natural diets. Overall, glycogen storage level and alkaline phosphatase activity responded primarily to diet, whereas esterase activity was also influenced by ontogeny and phylogeny and differed between intestinal regions among the species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call