Abstract

We analyze whether circuit QED Hamiltonians are stoquastic, focusing on systems of coupled flux qubits. We show that scalable sign-problem-free path integral Monte Carlo simulations can typically be performed for such systems. Despite this, we corroborate the recent finding [I. Ozfidan et al., Phys. Rev. Appl. 13, 034037 (2020)] that an effective, nonstoquastic qubit Hamiltonian can emerge in a system of capacitively coupled flux qubits. We find that if the capacitive coupling is sufficiently small, this nonstoquasticity of the effective qubit Hamiltonian can be avoided if we perform a canonical transformation prior to projecting onto an effective qubit Hamiltonian. Our results shed light on the power of circuit QED Hamiltonians for the use of quantum adiabatic computation and the subtlety of finding a representation which cures the sign problem in these systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.