Abstract

We present an approach to completely stop terahertz radiation in an optical system with a gyroelectric semiconductor. This system is composed of guiding and stopping parts formed by the semiconductor with different cladding structures. Because the dispersion properties of surface magnetoplasmons (SMPs) in the semiconductor closely depend on its cladding structure, robust one-way SMPs sustained by the guiding part are prohibited in the stopping part, thereby stopping terahertz radiation without any backscattering. For incident continuous waves, trapped spots with strongly enhanced fields occur on a subwavelength scale. For incident pulses, the wave packets can be completely trapped and simultaneously compressed to subwavelength sizes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.